STE competitiveness vs other renewables and conventional

Dr. Luis Crespo
President of ESTELA
General Secretary of Protermosolar

Casablanca May the 5th, 2016
The big question mark:
Onshore Wind and PV have reached already competitive cost levels.
Thus, is it still worth continuing to support the STE technology?

Current gap

<table>
<thead>
<tr>
<th>Technology</th>
<th>Capacity (GW)</th>
<th>Cost ($/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STE</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>PV</td>
<td>200</td>
<td>6</td>
</tr>
<tr>
<td>Wind</td>
<td>400</td>
<td>6</td>
</tr>
</tbody>
</table>

Value

Symbol: £

Maturity

Symbol: £

The PPAs for the two recently awarded STE plants in Morocco Noor 2 & 3 (200 MW PT & 150 MW T) were 15% lower than the previous one for Noor 1 awarded 2 years ago.

A 110 MW STE plant with 17.5 hours of storage, partly hybridized with PV, was recently selected in Chile with a PPA of $110/MWh, in competition with all other generation technologies including Gas Combined Cycle.

The tariff for the current “Expedited round” in South Africa is close to 20% less than the previous one for Round 3 established 18 months ago.

Solo el necio confunde valor y precio.

Only a fool confuses value with price.

Antonio Machado

Antonio Machado

‘‘Maturity”

Symbol: £
RES technologies account for most of the new capacity additions in the last years at world level and this trend will increase exponentially in the near future

- Who can ever promote – on a pure commercial basis - a new coal, gas combined cycle or nuclear power plant in most of the countries in the world?
- Which financing organization could take the risk of uncertain carbon taxes or even strong operational restrictions during the payback time of the loans?

Therefore RES will in the future rarely compete with conventional power plants ...
... but high penetration of non dispatchable technologies in simply unsustainable

- The increase of the share of intermittent electricity generation is due to the fact that in many countries additional generation is auctioned so as to secure a long-term PPA.

- This approach leads to situations in which the offer could exceed the demand and the subsequent issues: what to do with electricity surpluses and how to fairly compensate the old conventional plants, effectively providing the necessary back up, but operating only few hours a year?

- It is also foreseeable that markets will - at a given moment - send investors signals about foreseeable low investment yield for a product offered by most market actors at the same time, which will certainly reduce the resulting marginal prices and challenge the business cases for such investments.
Following the initial phase of RES deployment – reaching now about 400 GW of Wind and 200 GW of PV worldwide - time has come to face an essential fact:

There are two types of renewables:

- One is the cheaper non-dispatchable
- The other one is the still-more-expensive but dispatchable technology - such as solar thermal electricity STE/CSP

Achieving a CO2-free power system will be only possible with a larger share on dispatchable renewables.
VALUE OF SOLAR POWER ACCORDING TO RE PENETRATION SHARE

Example for 33% and 40% RE shares in California (NREL, May 2014)

<table>
<thead>
<tr>
<th>Value component</th>
<th>33% renewables</th>
<th>40% renewables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STE with storage value (USD/MWh)</td>
<td>PV Value (USD/MWh)</td>
</tr>
<tr>
<td>Operational</td>
<td>46.6</td>
<td>31.9</td>
</tr>
<tr>
<td>Capacity</td>
<td>47.9-60.8</td>
<td>15.2-26.3</td>
</tr>
<tr>
<td>Total</td>
<td>94.6-107</td>
<td>47.1-58.2</td>
</tr>
</tbody>
</table>

Conclusion:
It is equivalent for the total cost of the system to pay 5 to PV than 10 to STE

- **What does operational value means:**
 Operational value represents the avoided costs of conventional generation at their respective dispatching times along with related ancillary services costs, such as spinning reserve, etc. Savings on emission costs are also accounted.

- **What does capacity value means:**
 Capacity value reflects the ability to avoid the costs of building new conventional generation in response to growing energy demands or plant retirements.
The guiding principle for further investment steps towards a sustainable energy transition should not only be how much a generated kWh in a given power plant costs based in CAPEX/OPEX. Instead, the value it effectively adds to the system should be from now on the essential factor for deciding on investments. The metric of LCOE may be useful for academic purposes, but it is no longer supportive of a longer-term energy policy-making resulting in system planning decisions and support schemes.

The “Value” versus “Cost” approach is being understood by more and more policy makers and reference organizations although it will take a while to abandon unspecific auctioning when supporting the deployment of new RE capacity in the different countries.
✓ Firmness of supply is a step beyond dispatchability

Gas and storage: the perfect combination of gas turbines with molten salt tower plants

This concept can be defined as “decoupled Integrated Solar Combined Cycle”. It has nothing to do with the ISCC since it provides a much higher share of the solar part.

It will have nearly the same efficiency than the combined cycles but its operation will be much easier and flexible.

Reference HYSOL project
STE plants could facilitate the deployment of variable RES power plants

Examples of existing co-location of plants

Andasol plants (150 MW) and wind parks (200 MW) in the province of Granada, Spain

Dispatching STE at the evening peak to complement PV plants will increase significantly the operational and capacity value of hybrid STE/PV plants

10 MW STE plant co-located with 1 MW PV in the Solucar complex, Seville, Spain
1. Technical
STE is the only dispatch-able and grid-friendly renewable technology with potential enough to firmly meet the electricity needs worldwide in order to achieve an almost carbon free generation system. A wise mix with other R.E. technologies will be the right choice.

2. Local Economic Development
Local content of STE plants - and conversely its GDP contribution - should be one of the main drivers behind the coming supporting policies in most countries of the Sunbelt.

3. Affordable cost with higher value
STE plants are currently a cost competitive choice to supply the increasing power demand of emerging countries compared with “investing twice” as it would be the case regarding other fluent R.E. technologies + CC backup. Furthermore STE plants will show important reductions when approaching similar values of Wind (400 GW) and PV (200 GW) from their current 5 GW
Some recent data on STE production in Spain

All the 50 STE Plants in Spain are performing according to the expectations. The learning curve took between 1 to 2 years depending on the plant but now all are working very well.

Improvements in operation and O&M cost reductions are still being applied.

These curves show how good STE production matches the demand.

Important milestones in 2015:

- Installed Power 2300 MW (50 plants)
- New yearly record 5.1 TWh
- Max. contribution > 8%
 - At many moments from May till September
- Max. daily contribution around 5%
 - At many days in June, July, and August
- Monthly production close to 4%
 - 889 GWh in July
Typical production in a summer day

https://demanda.ree.es/demanda.html

Important to notice:
Although the installed PV power is 4,7 G its contribution in sunny hours is far below than double the STE one

Hourly production for past days can be easily tracked with the calendar and the pointer.
The extended daily production can be also seen when pointing on the STE portion of the generation structure
Historic production of STE plants in Spain

Monthly production record 889 GWh

Yearly production record 5.113 GWh
Macroeconomic Benefits for the country’s economy
Comparison between premiums and returns of a STE deployment program

Supporting STE was a wise decision for Spain and it will be so in all countries.
Industry localization in Spain for solar field components

Prerequisite:
Stable program of some few hundred MW per year

Absorber tubes

Curved mirrors

Collector structure
Other direct effects on Industry

Reorientation of other mature industries:
- Construction, civil works
- Engineering of conventional power plants
- Electricity Transmission Infrastructures
- Galvanizers, ...

Reinforcement of some industry sectors:
- Piping and tanks
- Heat exchangers
- Boilers
- Cabling
- Telecommunication and control

Huge impact in auxiliary sectors
- Cleaning, environmentalists, labs, ...
- Road transport
- Training, ...

+ Reinforcement of supplier’s subsidiaries in the country:
 Promotion, Maintenance, Spare parts, ...
Required value for a 25-year PPA without escalation for a standard 150 MW 5-hour storage STE plant without any kind of financial public support

Stars reflect the PPA harmonized – discounting the differences with the “standard” plant – values of real projects in different countries

Source ESTELA
Cost of electricity from STE plants is highly dependent on the location and size along with PPA terms and financing conditions. A combination of innovation, component prices and soft costs (permitting, financing, engineering, ...) reduction will be key for competitiveness.
Are we comparing apples to apples?

Cost/kW is not the right indicator. Comparisons must be - at least - made in terms of investment for the same yearly production.

When talking at system level what matters is not simply generation cost but system costs and benefits, which comprise its “value”.

Apart from dispatchability and grid integration issues, which provide a clear and accountable “plus” to STE and macroeconomic impacts, which policy makers should take into account, there are other aspects which are usually disregarded such as:

Life of components, performance degradation, impact of temperature on performance, losses in charging and discharging batteries or pumping stations, etc.

Clearly not !!!
Time has come to realize that it is not enough establishing global goals on the share of RE by 2030 or 2050. **Linking the necessary high contribution of dispatchable generation technologies to these goals is already a must.** Otherwise a CO₂ free generation system will not be feasible and business cases for any RES investments will no longer be given.

- **STE is** - and will continue to be - the **necessary choice** when planning addition of new capacity in sunny countries.

- **STE would be** also the **preferred choice** for policy makers when all the impacts - technical and economical - are duly taken into account.
Thank you for your attention
luis.crespo@estelasolar.org
www.estelasolar.org
www.protermosolar.com